Vorteile und Anwendung der Flanschdichtung "novapress"

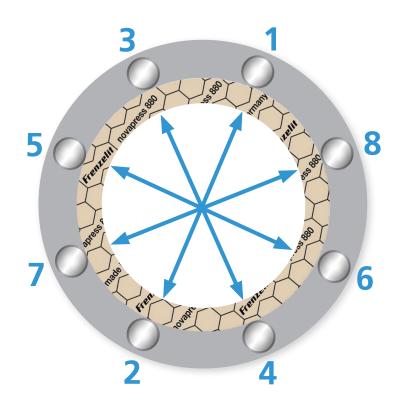
Klassische Faserstoffdichtung

The state of the s

novapress-Dichtung

Für die Dichtheit einer Dichtung ist die Sauberkeit der Fläche und die Flächenpressung maßgeblich!

Beispiel Flansch Ø 120/180 mm mit 8 Stk Schrauben M12:


Dichtung	Zu verpressende Fläche	Anziehdrehmoment Schrauben	Flächenpressung bei Montage	Flächenpressung bei Betriebsdruck
Klassische Dichtung	12.525 mm² (komplette Fläche)	84 Nm (80 % Schraubenausnutzung)	23,85 N/mm²	22,9 N/mm²
Novapress	4.139 mm ²	79 Nm	67,6 N/mm²	65,1 N/mm²

Diese Verhältnisse sind bei anderen Flanschdimensionen ähnlich!

Vorteile der novapress-Dichtung:

- fast 3-fache Flächenpressung an der Dichtung die Erwärmung spielt keine Rolle mehr
- muss nach der Inbetriebnahme nicht nachgezogen werden
- geringere Belastung der Schrauben bei höherer Sicherheit auf Dichtheit
- rückstandslos entfernbar aufgrund speziell beschichteter Oberfläche
- für Temperaturen von -100 bis +200 °C geeignet
- gem. EG Verordnung Nr. 1935/2004 lebensmitteltauglich
- DVGW-Zertifiziert

Uns ist bewusst, dass die Dichtung auf Grund der reduzierten Fläche "weniger wertig" erscheint. Effektiv verhält es sich jedoch so, dass nur die Fläche bis zu den Schraubenlöchern als Dichtung fungiert. Sollte diese Fläche nicht ausreichen, kommt es zu einer Leckage mit Austritt des Mediums an den Schrauben, daher ist eine Dichtfläche über die gesamte Flanschoberfläche nicht nötig.

Art.Nr.	Kurzbezeichnung	Schrauben: Anzahl/Werkstoff		Nm (Betriebs- druck 10 bar)		
200857	Dichtung zu Flansch ø 120 x ø 180 mm	8 x M12		73 Nm		
200958	Dichtung zu Flansch ø 170 x ø 240 mm	12 x M12		79 Nm	l t	
200707	Dichtung zu Flansch ø 200 x ø 280 mm	12 x M12	∞.	73 Nm	me	
200959	Dichtung zu Flansch ø 220 x ø 290 mm	12 x M12	₩	79 Nm	I OE	
200908	Dichtung zu Flansch ø 300 x ø 380 mm	19 x M14	stol	117 Nm	reh	
200960	Dichtung zu Flansch ø 350 x ø 430 mm	22 x M14	Werkstoff	126 Nm	hd	
200910	Dichtung zu Flansch ø 400 x ø 480 mm	26 x M12	Š	73 Nm	Anziehdrehmome	
200709	Dichtung zu Flansch ø 500 x ø 580 mm	32 x M16		182 Nm	Ā	
200846	Dichtung zu Mannloch DN500, ø 500 x 610 x 2 mm	20 x M16		182 Nm		
Anziehdrehmoment stufenweise erhöhen!						

Anziehdrehmoment stufenweise erhöhen!

Zuerst mit ca. 50 % der Kraft und erst im zweiten Durchgang mit 100 %!